Main Navagational Buttons

   Interested Anyone

 updated December 11, 2003

Your on page2
  | One | Two | Three | Four | Five

 MAC address
 

Short for Media Access Control address, a hardware address that uniquely identifies each node of a network. In IEEE 802 networks, the Data Link Control (DLC) layer of the OSI Reference Model is divided into two sublayers: the Logical Link Control (LLC) layer and the Media Access Control (MAC) layer. The MAC layer interfaces directly with the network media. Consequently, each different type of network media requires a different MAC layer.

On networks that do not conform to the IEEE 802 standards but do conform to the OSI Reference Model, the node address is called the Data Link Control (DLC) address.

See a breakdown of the seven OSI layers in the Quick Reference section of Webopedia.

To find your MAC address try going to this out side link source

 

On a (LAN) ( Local area network) :
The term you selected is being presented by searchNetworking.com, a TechTarget site for Networking professionals.
A local area network (LAN) is a group of computers and associated devices that share a common communications line or wireless link and typically share the resources of a single processor or server within a small geographic area (for example, within an office building). Usually, the server has applications and data storage that are shared in common by multiple computer users. A local area network may serve as few as two or three users (for example, in a home network) or many as thousands of users (for example, in an FDDI network).

The main local area network technologies are:

* Ethernet
* Token Ring
* ARCNET
* FDDI (Fiber Distributed Data Interface)

 

or other network, the MAC (Media Access Control) address is your computer's unique hardware number. (On an Ethernet LAN, it's the same as your Ethernet address.)

Ethernet is the most widely-installed local area network (LAN) technology. Specified in a standard, IEEE 802.3, Ethernet was originally developed by Xerox and then developed further by Xerox, DEC, and Intel. An Ethernet LAN typically uses coaxial cable or special grades of twisted pair wires. Ethernet is also used in wireless LANs. The most commonly installed Ethernet systems are called 10BASE-T and provide transmission speeds up to 10 Mbps. Devices are connected to the cable and compete for access using a Carrier Sense Multiple Access with Collision Detection (CSMA/CD) protocol.

Fast Ethernet or 100BASE-T provides transmission speeds up to 100 megabits per second and is typically used for LAN backbone systems, supporting workstations with 10BASE-T cards. Gigabit Ethernet provides an even higher level of backbone support at 1000 megabits per second (1 gigabit or 1 billion bits per second). 10-Gigabit Ethernet provides up to 10 billion bits per second.

When you're connected to the Internet from your computer (or host as the Internet protocol thinks of it),

The term "host" is used in several contexts, in each of which it has a slightly different meaning:

1) In Internet protocol specifications, the term "host" means any computer that has full two-way access to other computers on the Internet. A host has a specific "local or host number" that, together with the network number, forms its unique IP address. If you use Point-to-Point Protocol to get access to your access provider, you have a unique IP address for the duration of any connection you make to the Internet and your computer is a host for that period. In this context, a "host" is a node in a network.

2) For companies or individuals with a Web site, a host is a computer with a Web server that serves the pages for one or more Web sites. A host can also be the company that provides that service, which is known as hosting.

3) In IBM and perhaps other mainframe computer environments, a host is a mainframe computer (which is now usually referred to as a "large server"). In this context, the mainframe has intelligent or "dumb" workstations attached to it that use it as a host provider of services. (This does not mean that the host only has "servers" and the workstations only have "clients." The server/client relationship is a programming model independent of this contextual usage of "host.")

4) In other contexts, the term generally means a device or program that provides services to some smaller or less capable device or program.

a correspondence table relates your IP address to your computer's physical

 

IP address
The term you selected is being presented by searchWebServices.com, a TechTarget site for Web Services professionals.
This definition is based on Internet Protocol Version 4. See Internet Protocol Version 6 (IPv6) for a description of the newer 128-bit IP address. Note that the system of IP address classes described here, while forming the basis for IP address assignment, is generally bypassed today by use of Classless Inter-Domain Routing (CIDR) addressing.

In the most widely installed level of the Internet Protocol (IP) today, an IP address is a 32-bit number that identifies each sender or receiver of information that is sent in packets across the Internet. When you request an HTML page or send e-mail, the Internet Protocol part of TCP/IP includes your IP address in the message (actually, in each of the packets if more than one is required) and sends it to the IP address that is obtained by looking up the domain name in the Uniform Resource Locator you requested or in the e-mail address you're sending a note to. At the other end, the recipient can see the IP address of the Web page requestor or the e-mail sender and can respond by sending another message using the IP address it received.

An IP address has two parts: the identifier of a particular network on the Internet and an identifier of the particular device (which can be a server or a workstation) within that network. On the Internet itself - that is, between the router that move packets from one point to another along the route - only the network part of the address is looked at.

The Network Part of the IP Address
The Internet is really the interconnection of many individual networks (it's sometimes referred to as an internetwork). So the Internet Protocol (IP) is basically the set of rules for one network communicating with any other (or occasionally, for broadcast messages, all other networks). Each network must know its own address on the Internet and that of any other networks with which it communicates. To be part of the Internet, an organization needs an Internet network number, which it can request from the Network Information Center (NIC). This unique network number is included in any packet sent out of the network onto the Internet.

The Local or Host Part of the IP Address
In addition to the network address or number, information is needed about which specific machine or host in a network is sending or receiving a message. So the IP address needs both the unique network number and a host number (which is unique within the network). (The host number is sometimes called a local or machine address.)

Part of the local address can identify a subnetwork or subnet address, which makes it easier for a network that is divided into several physical subnetworks (for examples, several different local area networks or ) to handle many devices.

IP Address Classes and Their Formats
Since networks vary in size, there are four different address formats or classes to consider when applying to NIC for a network number:

* Class A addresses are for large networks with many devices.
* Class B addresses are for medium-sized networks.
* Class C addresses are for small networks (fewer than 256 devices).
* Class D addresses are multicast addresses.

The first few bits of each IP address indicate which of the address class formats it is using. The address structures look like this:

Class A
0 Network (7 bits) Local address (24 bits)

Class B
10 Network (14 bits) Local address (16 bits)

Class C
110 Network (21 bits) Local address (8 bits)

Class D
1110 Multicast address (28 bits)

The IP address is usually expressed as four decimal numbers, each representing eight bits, separated by periods. This is sometimes known as the dot address and, more technically, as dotted quad notation. For Class A IP addresses, the numbers would represent "network.local.local.local"; for a Class C IP address, they would represent "network.network.network.local". The number version of the IP address can (and usually is) represented by a name or series of names called the domain name.

The Internet's explosive growth makes it likely that, without some new architecture, the number of possible network addresses using the scheme above would soon be used up (at least, for Class C network addresses). However, a new IP version, IPv6, expands the size of the IP address to 128 bits, which will accommodate a large growth in the number of network addresses. For hosts still using IPv4, the use of subnets in the host or local part of the IP address will help reduce new applications for network numbers. In addition, most sites on today's mostly IPv4 Internet have gotten around the Class C network address limitation by using the Classless Inter-Domain Routing (CIDR) scheme for address notation.

Relationship of the IP Address to the Physical Address
The machine or physical address used within an organization's local area networks may be different than the Internet's IP address. The most typical example is the 48-bit Ethernet address. TCP/IP includes a facility called the Address Resolution Protocol (ARP) that lets the administrator create a table that maps IP addresses to physical addresses. The table is known as the ARP cache.

Static versus Dynamic IP Addresses
The discussion above assumes that IP addresses are assigned on a static basis. In fact, many IP addresses are assigned dynamically from a pool. Many corporate networks and online services economize on the number of IP addresses they use by sharing a pool of IP addresses among a large number of users. If you're an America Online user, for example, your IP address will vary from one logon session to the next because AOL is assigning it to you from a pool that is much smaller than AOL's base of subscribers.

DLC also is an abbreviation for digital loop carrier.

DLC (data link control) is the service provided by the Data Link layer of function defined in the Open Systems Interconnection (OSI) model for network communication. The Data Link layer is responsible for providing reliable data transfer across one physical link (or telecommunications path) within the network. Some of its primary functions include defining frames, performing error detection or ECC on those frames, and performing flow control (to prevent a fast sender from overwhelming a slow receiver).

Many point-to-point protocols exist at the Data Link layer including High-level Data Link Control (HDLC), Synchronous Data Link Control (SDLC), Link Access Procedure Balanced (LAPB), and Advanced Data Communications Control Procedure (ADCCP). All of these protocols are very similar in nature and are found in older networks (such as X.25 networks). In the Internet, one of two point-to-point protocols are used at this layer: Serial Line Internet Protocol (SLIP) or Point-to-Point Protocol (PPP) with PPP being the newer, approved standard. All of these protocols are used in point-to-point connections such as those on metropolitan area network (MAN) or wide area network (WAN) backbones or when we dial our Internet service provider (ISP) from home using a modem.

In local area networks (LANs) where connections are multipoint rather than point-to-point and require more line-sharing management, the Data Link layer is divided into two sublayers: the Logical Link Control layer and the Media Access Control layer. The Logical Link Control layer protocol performs many of the same functions as the point-to-point data link control protocols described above. The Media Access Control (MAC) layer protocols support methods of sharing the line among a number of computers. Among the most widely used MAC protocols are Ethernet (IEEE 802.3), Token Bus (IEEE 802.4), and Token Ring (IEEE 802.5) and their derivatives

 

 

Waymore Webs ©1998 - 2003 All Rights Reserved